UNNAMED TRIBUTARY TO BEAR SWAMP CREEK STREAM RESTORATION SITE 2005 Annual Monitoring Report (Year 3)

Franklin County EEP Project No. 27 Design Firm: Arcadis G&M of North Carolina, Inc.

February, 2006

Prepared for: NCDENR/ ECOSYSTEM ENHANCEMENT PROGRAM 1619 Mail Service Center Raleigh, NC 27699-1619

Prepared by: ECOSCIENCE CORPORATION 1101 Haynes Street, Suite 101 Raleigh, NC 27604

Table of Contents

1.0	EXECU	JTIVE SU	JMMARY	. 1
2.0	PROJE	CT BACK	KGROUND	. 3
	2.1	Location	and Setting	. 3
	2.2	Mitigatio	n Structure and Objectives	. 3
	2.3	Project H	listory and Background	. 4
3.0	PROJE	CT MON	ITORING AND RESULTS	. 7
	3.1	VEGETA	ATION ASSESSMENT	. 7
		3.1.1	Soil Data	. 7
		3.1.2	Vegetation Problem Areas	. 7
		3.1.3	Stem Counts	. 7
	3.2	STREAM	A ASSESSMENT	.9
		3.1.1	Bank Stability Assessment	.9
		3.1.2	Stream Problem Areas	.9

LIST OF FIGURES

Table 1	Site Location	. Appendix A
Table 2	Monitoring Plan View	. Appendix A

LIST OF TABLES

Table 1	Project Mitigation Structure and Objectives	Page 4
Table 2	Project Activity and Reporting History	Page 4
Table 3	Project Contacts	Page 5
Table 4	Project Background	Page 6
Table 5	Preliminary Soil Data	Page 7
Table 6	Vegetation Problem Areas	Page 7
Table 7	Stem Counts for Each Species Arranged in Plot	Page 7
Table 8	BEHI Estimates	Page 9
Table 9	Stream Problem Areas	Page 9
Table 10	Categorical Stream Feature Visual Stability Assessment	Page 10
Table 11	Baseline Morphology and Hydraulic Summary	Page 11
Table 12	Morphology and Hydraulic Monitoring Summary	Page 12

APPENDIX A: FIGURES

APPENDIX B: VEGETATION DATA Vegetation Problem Area (Plan View) Vegetation Problem Area Photos Vegetation Survey Data Tables Vegetation Plot Photos

APPENDIX C: STREAM GEOMORPHOLGY DATA

Stream Problem Area (Plan View) Representative Stream Problem Area Photos Permanent Station Photos Exhibit C1 Visual Morphological Stability Assessment Cross-Section Plots and Raw Data Tables Exhibit Cross-Sections Longitudinal Plots and Raw Data Tables Exhibit Longitudinal Profile Exhibit Raw Data Tables for Slope Pebble Count Plots and Raw Data Tables

1.0 EXECUTIVE SUMMARY

The Unnamed Tributary to Bear Swamp Creek Stream Mitigation Site (hereafter referred to as the "Site") was constructed for the North Carolina Ecosystem Enhancement Program (EEP) to provide compensatory stream mitigation in the Tar/Pamlico River Basin. This stream restoration project is located on an unnamed tributary to Bear Swamp Creek at the Murphy Hay Farm just north of the Town of Louisburg. This project involves the permanent exclusion of cattle from the stream, stabilization of eroding stream banks, installation of cross-vane structures for habitat, and the planting of a forested riparian buffer.

The following report summarizes the monitoring activities that have occurred in the past year (the third year of project monitoring) at the Site. Site construction began and was completed in July 2002. As-built surveys for the Site were performed in August 2002. First year monitoring was conducted in September 2003, and second year monitoring was performed in 2004. The Site must demonstrate vegetative criteria success and a stable restored stream channel for a minimum of five years or until the Site is deemed successful. The following paragraphs summarizes the results of the current year monitoring.

Vegetation Monitoring

Vegetation success criteria for the forested riparian restoration areas is based on a minimum survival of 320 stems per acre of planted species at the end of Year 5. Volunteer woody vegetation will also be included in the survivability calculations. Based on the third year surveys, the average count of the surviving planted species is 620 stems per acre. If volunteer species are included, the total number of stems increases to 8,120 stems per acre.

The Site is meeting the established success criteria for vegetation based on the survival of the planted species. When volunteer species are included in the calculation, the densities are very high. This is typical of the early forest successional development process when open fields and pastures go fallow. Early successional species in abundance on the site include loblolly pine (*Pinus taeda*), red maple (*Acer rubrum*), and sweet gum (*Liquidambar styraciflua*). The heavy loblolly pine colonization, in particular, is becoming a nusisance as they compete with the more desireable species for light and nutrients. Measures may need to be undertaken in the near future to cull their numbers.

Stream Enhancement Monitoring

Success criteria for the restored stream reach has been established to confirm no significant changes have occurred to the dimension, pattern, profile, and bed material over the 5-year monitoring period. Location surveys of the constructed features were conducted to verify the performance of the stream. A total station survey was used to describe the stream longitudinal profile and five permanent stream cross-section (3 riffles and 2 pools). A modified Wolman pebble count and assessment of the constructed features was also undertaken.

Overall, the stream channel bed form is stable. Water surface and bed slopes have changed little from the as-built conditions. However, many of the grade control structures (rock vanes) in the stream have failed which has led to low to moderate bed degradation immediately behind these structures. Of the twenty-four rock vanes that were installed, ten are not performing their intended function. Six vanes have water piping through or behind the structure. The remaining four have filled-in with sediment and have become obsolete.

Based on the cross-sections and visual observations, the channel dimensions have not changed significantly. However, observed features and surveyed cross-section indicate that the channel has narrowed slightly and is developing a bankfull bench at many locations. The stream was designed as a B5c (step-pool) stream (Rosgen 1996), which provides a sand bed channel with moderate entrenchment and a moderate width-depth ratio. The current classification measurements are split, with the current channel exhibiting the moderate entrenchment characteristic of a B-channel, yet exhibiting a very low width-depth ratio of an E-channel. During the current survey, bankfull indicators were also found at a significantly lower elevation than those described by the designer. Caution is advised in interpreting and comparing past years data. This years morphological data is based on the newly identified bankfull elevation. Pebble counts show no significant change to the channel substrate.

2.0 PROJECT BACKGROUND

2.1 LOCATION AND SETTING

The Site is located north of Louisburg in Franklin County, NC, immediately south of Dyking Road (SR 1235) at the Murphy Hay Farm (Figure 1, Appendix A). From Raleigh follow Highway 401 north to Louisburg. Approximately one mile past the the Highway 561 split in Louisburg take a left onto Dyking Road. The Murphy Hay Farm will be approximately one mile on your left. The entrance to the stream restoration area is accessed by several gates through the electric fence. The stream restoration reach begins approximately 460 feet upstream of the road crossing and ends approximately 775 feet downstream.

2.2 **RESTORATION STRUCTURE AND OBJECTIVES**

Approximately 1,400 linear feet of an Unnamed Tributary to Bear Swamp Creek were identified on the 32-acre Murphy Hay Farm. The stream had severely degraded and eroded significantly due to past vegetation removal and the unrestricted access of cattle. The torrential rain events associated with Hurricanes Fran and Floyd provided the final impetus for restoration work. The stream originates at a pond approxiamely 500 feet east of Dyking Road and 1,000 feet east of the project. Land use in the watershed consists of agriculture, pature, forest, and single-family residential.

The design of the new stream included both Priority II and III stream restoration. The degraded F5 and G5c stream types were restored to a B5c (Rosgen 1996). Approxiantely 664 linear feet of new channel was constructed; and 771 linear feet of stream was stabilized in-place. Approximaley 800 tons of rock were used to construct 24 rock vanes throughout the reach (Figure 2, Appendix A). The vanes were designed to improve hyraulic flow and reduce shear stress. The vanes also provided bed stabilization and improved stream habitat by creating pools. The steep, eroded banks were graded back and expanded to increase the entrenchment ratio. Root wads were also installed to provide bank protecting and additional habitat diversity. Approximately 2.4 acres of riparian vegetation was also established along the restored channel in Zone 1 (inner 30 feet) of the Tar/Pamlico Riparian Buffer. This riparian buffer zone has been fenced to exclude cattle. Site construction began and was completed in July 2002. Project monitoring began the next year in September 2003.

The objective of this project is to restore habitat and water quality to the restored reach and the Tar-Pamlico River Basin as a whole. By stablizing the streambed and banks, the restoration will improve water quality by reducing the amount of sediment contributed to the watershed. Exclusion of cattle and establishment of a permanent riparian buffer should further help reduce sediment and nutrient imput. The newly established riparian buffer will provide shade, thereby reducing water temperatures, and increase habitat and food for wildlife.

Table 1. Project StructureUT to Bear Swamp Creek Stream Restoration Site / EEP Project No. 27									
Project Segment	testoration Type	Approach	Linear Footage or						
or Reach ID	R	7	Acreage	Stationing	Comments				
	R	P2/P3	780 linear feet*	Exact locations unknown					
Keach I	S	SSS	680 linear feet*	Exact locations unknown					
Riparian Vegetation Re- establishment	R		2.4 acres	N/A					

*Linear footage values provided in the project's Mitigation Plan-reaches are not distinguished on figures or in text narrative

R	= Restoration	P1	= Priority I
ΕI	= Enhancement I	P2	= Priority II
EII	= Enhancement II	P3	= Priority III
S	= Stabilization	SSS	= Stream Bank Stabilization

2.3 PROJECT HISTORY AND BACKGROUND

Table 2. Project Activity and Reporting History							
UT to Bear Swamp Creek Stream Restora	tion Site / EEP	Project No. 2	7				
		Data	Actual				
	Scheduled	Collection	Completion				
Activity Report	Completion	Complete	or Delivery				
Restoration Plan	NA*	NA*	NA*				
Final Design (90%)	NA*	NA*	NA*				
Construction	NA*	NA*	July 2002				
Temporary S&E mix applied to entire project area	NA*	NA*	NA*				
Permanent seed mix applied to reach/segments	NA*	NA*	NA*				
Bare Root Seedling Installation	NA*	NA*	NA*				
Mitigation Plan	NA*	NA*	April 2003				
Minor repairs made filling small washed out areas			May 2003				
Final Report	NA*	NA	July 2003				
Year 1 Vegetation Monitoring	NA*	Fall 2003	Iam 2004				
Year 1 Stream Monitoring	NA*	NA* Sept 2003 Jan					
Year 2 Vegetation Monitoring	NA*	NA*	NTA 4				
Year 2 Stream Monitoring	NA*	NA* NA*					
Year 3 Vegetation Monitoring	Dec 2005	Dec 2005 Oct 2005					
Year 3 Stream Monitoring	Dec 2005	Nov 2005	Dec 2005				

Bolded Items represent those events or deliverables that are variable. Non-bolded items represent events that are standard over the course of a typical project.

Table 3. Project Contacts						
UT to Bear Swamp Creek Stream F	Restoration Site / EEP Project No. 27					
Designer	Mr. Robert Lepsic					
	801 Corporate Center Drive, Suite 300					
	Raleigh, NC 27607					
Arcadis G&M of North Carolina, Inc. (ARCADIS)	(919) 854-1282					
Construction Contractor	130 Penmarc Drive, Suite 108					
	Raleigh, NC 27603-2434					
SEI Environmental, Inc.						
Planting Contractor	2889 Lowery Street					
	Winston Salem, NC 27101					
North State Environmental, Inc.	(336) 725-2010					
Seeding Contactor	NA*					
NA*						
Sood Mix Sources	NA*					
Seed Mix Sources						
Nursery Steel Suppliers	NA*					
Nursery Stock Suppliers						
Monitoring Performers	EcoScience Corporation					
	1101 Haynes Street, Suite 101					
	Raleigh, NC 27604					
	(919) 828-3433					
Stream Monitoring POC	Jens Geratz					
Vegetation Monitoring POC	Elizabeth Scherrer					

Table 4. Project Background						
UT to Bear Swamp Creek Stream R	Restoration Site / EEP Project No. 27					
Project County	Franklin					
Drainage Area	0.26 square miles					
Impervious cover estimate (%)	<1 percent					
Stream Order	1st order					
Physiographic Region	Piedmont					
Ecoregion (Griffith and Omernik)	Northern Outer Piedmont					
Rosgen Classification of As-built	B5c					
Cowardin Classification	Stream (R3UB2)					
Dominant soil types	Wake-Saw-Wedowee Complex (WaB)					
	Wedowee (WeB, WeC)					
	Wake-Wateree-Wedowee Complex (WbD)					
Reference Site ID	000543201A					
USGS HUC for Project and Reference	03020101040010					
NCDWQ Sub-basin for Project and Reference	03-03-01					
NCDWQ classification for Project and Reference	NA*					
Any portion of any project segment 303d listed?	No					
Any portion of any project segment upstream of a	No					
303d listed segment?						
Reasons for 303d listing or stressor	N/A					
Percent of project easement fenced	30-foot buffer fenced around entire reach					

3.0 PROJECT MONITORING AND RESULTS

3.1 VEGETATION ASSESSMENT

3.1.1 Soil Data

Table 5. Preliminary Soil Data									
UT to Bear Swamp Creek Stream Restoration Site / EEP Project No. 27									
Sorias	Max Depth % Clay on		V	т	OM 9/				
Series	(in.)	Surface	ĸ	1	UNI 70				
Wake-Saw-Wedowee Complex (WaB)	32	3-20	0.15-0.28	1-4	0.5-3				
Wedowee (WeB, WeC)	32	5-20	0.24-0.28	4	0.5-3				
Wake-Wateree-Wedowee Complex (WbD)	54	2-20	0.15-0.28	1-4	0.5-3				

3.1.2 Vegetation Problem Areas

Table 6. Vegetative Problem Areas UT to Bear Swamp Creek Stream Restoration Site / EEP Project No. 27								
Feature / Issue	Station # / Range	Probable Cause	Photo #					
Invasive	Throughout, but especially at Vegetation Plot 1	Pinus taeda: seeding from adjacent stands	1 and 2					
Populations	Near Vegetation Plots 1 and 4	Acer rubrum: outside seed source						
	Mainly at upstream end of site	Lonicera japonica: outside seed source						
Bare Ground	0+50 to 1+00 and 1+50 to 2+00	Steep dry cut slope	3					

A vegetation problem area plan view and photos are provided in Appendix B.

3.1.3 Stem Counts

The existing five 20-foot by 45-foot plots were located and the corners marked with steel fence posts painted orange. Stem counts were conducted for all woody species, including volunteer species. An inventory of planted species is given in Table 7. A tally of volunteer woody species is listed in Table 7a.

Table 7: Stem Counts for Each Species Arranged by Plot UT to Bear Swamp Creek Stream Restoration Site / EEP Project No. 27									
Saucia			Plots			Year 1	Year 2	Survival	
Species	1	2	3	4	5	Totals*	Totals	%	
Shrubs									
Alnus serrulata						0	0		
Cornus amomum	3	6		3		13	12	92	
Ilex verticillata						0	0		
Salix nigra	4	21		3		19	29	153	
Sambucus canadensis						0	0		
Trees									
Betula nigra	4	1		1		0	6		

Table 7: Stem Counts for Each Species Arranged by Plot UT to Bear Swamp Creek Stream Restoration Site / EEP Project No. 27								
Carpinus caroliniana 1 0 0								
Fraxinus pennsylvanica		6	1		1	8	8	100
Juglans nigra	1	2				3	3	100
Morus rubra						1	0	0
Ostrya virginiana						5	0	0
Quercus michauxii	1			2	2	3	5	167
Quercus pagoda						1	0	0

* Initial Totals for planted species within vegetation plots are not available.

Table 7a. Stem Counts for Volunteer Species Arranged by Plot													
UT to Bear Swar	np Creel	x Strear	n Resto	ration S	ite / EEl	P Project No. 27	,						
Species			Plots			Voor 1 Totala	Voor 2 Totala						
Species	1	2	3	4	5	rear r rotais	real 2 rotais						
Acer negundo	2	1				0	3						
Acer rubrum	43			27	3	51	73						
Baccharis halimifolia 2 0 2													
Celtis laevigata 2 0 2													
Diospyros virginiana			1			0	1						
Liquidambar styraciflua	13				13	20	26						
Liriodendron tulipifera	2			1		7	2						
Pinus taeda	200	161	36	72	78	250	547						
Platanus occidentalis					1	0	1						
Prunus serotina		2		1	2	0	5						
Rhus copallina						1	0						
Rhus glabra	43					2	43						
Ulmus alata	37		1	2	1	0	41						
Viburnum nudum			3			0	3						

An inventory of herbaceous species on the site was also taken. Dominant herbaceous species over the Site as a whole are listed below:

Aster dumosus (frost aster) Bidens frondosa (beggar ticks) Duchesnea indica (Indian strawberry) Eupatorium capillifolium (dog fennel) Eupatorium fistulosum (Joe Pye weed) Helianthus angustifolius (swamp sunflower) Lonicera japonica (Japanese honeysuckle) Phytolacca americana (pokeweed) Polygonum sp. (smartweed) Rumex crispus (curly dock) Solanum carolinianum (horse nettle) Solidago sp. (goldenrod) Toxicodendron radicans (poison ivy) Vernonia sp. (ironweed)

3.2 STREAM ASSESSMENT

	Table 8. BEHI Estimate														
UT to Bear Swamp Creek Stream Restoration Site / EEP Project No. 27															
Time	Segment/	Linear			Ve	ery							Ve	ry	Sediment
Point	Reach	Footage	Exti	eme	High		High		Moderate		L)W	Lo	w	Export
			ft	%	ft	%	ft	%	ft	%	ft	%	Ft	%	Tons/year
3 rd year	Reach 1	160							100	22			260	70	1.2
monitoring	Above Road	460							100	22			360	/8	1.3
3 rd year	Reach 2	075									50	5	025	05	0.4
monitoring	Below Road	975									50	Э	925	95	0.4
3 rd year monitoring	Project Total	1435							100	7	50	3	1225	90	6.0

3.1.1 Bank Stability Assessment

3.1.2 Stream Problem Areas

Table 9. Stream Problem Areas											
UT to Be	ear Swamp Cree	k Stream Restoration Site / EEP Project No. 27									
	Station		Photo								
Feature Issue	Numbers	Suspected Cause	Number								
Vane 2, filled in		low slope, excess sediment	1								
Vane 3, structure failure		Piping, inadequate use of filter fabric, steep vane arms	2								
Vane 6, structure failure		Piping, inadequate use of filter fabric, steep vane arms	3								
Vane 8, structure failure		Piping, inadequate use of filter fabric, steep vane arms	4								
Vane 10, structure failure		Piping, inadequate use of filter fabric, steep vane arms	5								
Vane 11, structure failure		Piping, inadequate use of filter fabric, steep vane arms	6								
Vane 14, filled in		low slope, excess sediment	7								
Vane 17, filled in		low slope, excess sediment	8								
Vane 19, structure failure		Piping, inadequate use of filter fabric, steep vane arms	9								
Vane 24, filled in		low slope, excess sediment	Not available								
Incoming 4-inch pipe		No energy dissipater	10								
Slight Bank Erosion		Floodplain restriction	11								

A stream problem area plan view and photos of problem areas are provided in Appendix C

Table 10. Categorical Stream Feature Visual Stability AssessmentUT to Bear Swamp Creek Stream Restoration Site / EEP Project No. 27													
Segment/Reach: 1,439 feet													
FeatureInitialMY-01MY-02MY-03MY-04MY-05													
A. Riffles	100%	NA*	NA*	80%									
B. Pools	100%	NA*	NA*	91%									
C. Thalweg	100%	NA*	NA*	88%									
D. Meanders	100%	NA*	NA*	77%									
E. Bed General	100%	NA*	NA*	95%									
F. Rock Vanes	100%	NA*	NA*	82%									
G. Root Wads	100%	NA*	NA*	86%									

Table 11. Baseline Morphology and Hydraulic Summary																		
		UT t	to Beau	r Swan	np Cre	eek Str	eam R	lestora	tion S	ite / El	EP Pro	oject N	o. 27					
						1,	,439 lii	near fe	et									
Parameter	UCC	0.0	Data	Reg	ional C	urve	Pr	e-Exist	ing	Proje	ect Refe	rence		Desien			A = 1	1
	080	S Gage	Data	U.	Interva	l	0	Conditio	on	5	Stream			Design			AS-DUII	t
	NC	14	N 1	NC		N 1			N 1	NC		N 1		м	N 1			N 1
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	NA*	NA*	NA*	N/A	N/A	6./	NA*	NA*	NA*	11.0	11.8	11.4	10.0	10.0	10.0	8.1	10.7	9.6
Floodprone width (ff)	NA*	NA*	NA*	IN/A	IN/A	N/A	NA*	NA*	NA*	25.5	80.0	40.6	14.0	22.0	18.0	0.1	19.0	13.5
BF Cross Sectional Area (ff.)	NA*	NA*	NA*	IN/A	IN/A	8.5	NA*	NA*	NA*	10.3	14.0	12.1	8.6	8.6	8.6	8.1	10.7	9.3
BF Mean Depth (II)	NA*	INA*	NA*	IN/A	IN/A	1.0	NA*	NA*	NA*	0.9	1.2	1.1	0.8	0.8	0.8	0.9	1.0	1.0
BF Max Depth (It) Width/Dopth Patio	NA*	NA*	NA* NA*	IN/A N/A	IN/A N/A	IN/A	NA*	NA*	NA*	1.9	2.4	2.1	1.4	1.8	1.0	1.5	1./	1.0
Entrenchment Patie	NA ·	NA*	NA ·	IN/A N/A	IN/A N/A	0.7 N/A	NA ⁺	NA ·	NA ·	2.2	2.4	10.7	12	12	12	0.2	11.4	10.0
Wetted Perimeter(ft)	NA*	NA*	NA*	N/A	N/A	1N/A 87	NA*	NA*	NA*	13.2	14.0	13.6	1.4	11.6	1.0	1.7	1.0	1.0
Hydraulic radius (ff)	NA*	NA*	NA*	N/A	N/Λ	1.0	NA*	NA*	NA*	0.8	14.0	0.0	0.7	0.7	0.7	0.8	0.8	0.8
Pattorn	INA	INA	INA	1N/A	1N/A	1.0	INA	INA	INA	0.8	1.0	0.9	0.7	0.7	0.7	0.8	0.8	0.8
Channel Deltwidth (ff)	NA*	NA*	NA*	NI/A	NI/A	NI/A	NA*	NA*	NA*	6.0	8.0	7.0	20.0	80.0	27.0	5.5	825	21.2
Padius of Curveture (ft)	NA*	NA*	NA*	IN/A	IN/A N/A	IN/A N/A	NA*	NA*	NA*	62.0	0.0 200.0	240.0	20.0	242.0	100.0	3.5	02.5	77.9
Meander Wavelength (ft)	NA*	NA*	NA*	N/A	N/A	N/A	NA*	NA*	NA*	21.0	88.0	46.0	<u>55.0</u> <u>342.0</u> <u>199.0</u>		11.0	221.0	121.3	
Meander Width ratio	NA*	NA*	NA*	N/A	N/A	N/A	NA*	NA*	NA*	0.5	0.7	40.0	2.0	8.0	3 7	42.4	230.9	3.3
Profile	INA	INA	INA	11/1	11/1	11/1	INA	INA	INA	0.5	0.7	0.0	2.0	0.0	5.7	0.0	0.0	5.5
Diffle length (ft)	NIA*	NIA *	NIA *	NI/A	NI/A	NI/A	NIA *	NIA*	NIA *	NIA *	NIA *	NIA*	NIA*	NIA *	NIA *	NIA *	NIA *	NIA*
$\frac{1}{1}$	NA ·	INA '	INA '	IN/A	IN/A	IN/A	NA ⁺	INA ·	INA '	NA ·	NA ·	NA ·	NA ·	NA ·	NA ·	NA ·	NA ·	NA ·
Pool length (ft)	NA*	NA*	NA*	N/A	N/A	N/A	NA*	NA*	NA*	7.0	12.0	0.04	6.0	11.0	8.0	3.0	30.6	11 1
Pool spacing (ff)	NA*	NA*	NA*	N/A	N/A	N/A	NA*	NA*	NA*	22.0	69.0	42.0	19.0	61.0	37.0	31.7	115.5	53.5
Substrate	INA	INA	INA	11/1	11/1	11/1	INA	INA	INA	22.0	07.0	42.0	17.0	01.0	57.0	51.7	115.5	55.5
Substrate	NA*	NA*	NA*	NI/A	NI/A	NI/A	NIA*	NA*	NIA*	2	2	2	0.2	0.2	0.2	0.4	0.4	0.4
d30 (IIIII)	NA ·	INA '	NA ·	IN/A N/A	IN/A N/A	IN/A N/A	NA ⁺	NA ·	NA ·	3 40.7	3	3 40.7	0.2	0.2	0.2	0.4	0.4	0.4
d84 (IIIII)	INA ·	INA ·	INA ·	IN/A	IN/A	IN/A	INA.	INA ·	INA ·	49.7	49.7	49.7	2.9	2.9	2.9	10	10	10
Additional Reach Parameters																		
Valley Length (ft)		NA*			N/A			NA*			NA*			1,300			1,300	
Channel Length (ft)		NA*			N/A			NA*			NA*			1,435			1,435	
Sinuosity		NA*			N/A			NA*			1.1			1.1			1.1	
Water Surface Slope (ft/ft)		NA*			N/A			NA*			0.016			0.0157			0.0154	
BF slope (ft/ft)		NA*			N/A		NA* 0.016			0.0157 0.0154								
Rosgen Classification		NA*			N/A		NA*		B5c		B5c B5c							
**Habitat Index		NA*			N/A			NA*			NA*		NA* NA*					
**Macrobenthos		NA*			N/A			NA*			NA*			NA* NA*				

*Historical project documents necessary to provide this data were unavailable at the time of the report submission **Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria

Table 12. Morphology and Hydraulic Monitoring Summary UT to Bear Swamp Creek Stream Restoration Site / EEP Project No. 27 1,439 linear feet Crees Section 2 Crees Section 2																					
Parameter		Cros	s Section Riffle	n 1		Cı	ross Se Riff	ction 2 le			Cı	oss S Po	lection pol	n 3			Cr	oss Se Po	ection ol	n 4	
Dimension	MY1	MY2 N	IY3 MY4	MY5 N	1Y+ MY	1 MY2	MY3 N	AY4 MY	5 MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	NA*	NA*	5.0		NA	* NA*	3.4			NA*	NA*	5.0]	NA*	NA*	4.1			
Floodprone Width (ft)	NA*	NA*	9.5		NA	* NA*	7.3			NA*	NA*	9.8]	NA*	NA*	32.4			
BF Cross Sectional Area (ft ²)	NA*	NA* 2	2.6		NA	* NA*	1.9			NA*	NA*	1.9]	NA*	NA*	9.3			
BF Mean Depth (ft)	NA*	NA*).5		NA	* NA*	0.6			NA*	NA*	0.4]	NA*	NA*	2.2			
BF Max Depth (ft)	NA*	NA* ().7		NA	* NA*	0.8			NA*	NA*	0.6]	NA*	NA*	3.2			
Width/Depth Ratio	NA*	NA*	9.6		NA	* NA*	6.1			NA*	NA*	13.3]	NA*	NA*	1.9			
Entrenchment Ratio	NA*	NA*	.9		NA	* NA*	2.1			NA*	NA*	2.0]	NA*	NA*	7.8			
Wetted Perimeter(ft)	NA*	NA*	5.0		NA	* NA*	4.6			NA*	NA*	5.8]	NA*	NA*	12.9			
Hydraulic radius (ft)	NA*	NA* ().8		NA	* NA*	0.4			NA*	NA*	0.3]	NA*	NA*	0.7			
Substrate																					
d50 (mm)	0.4	NA* 0	.33		NA	* NA*	0.73			1.9	NA*	0.65				6.9	NA*	0.87			
d84 (mm)	3.0	NA* 0	.65		NA	* NA*	4.5			2937	NA*	1.5				3129	NA*	1.6			
Parameter	M	Y-01 (2003)	MY	7-02 (20	2 (2004) MY-03 (2005)				MY-04 (2006) MY-0.				Y-05	95 (2007) MY+ (2008)						
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Μ	lax	Med	Min	Ma	X	Med	Min	M	ax	Med
Channel Beltwidth (ft)	13.3	62.7	33.2	NA*	NA*	NA*	13.3	62.7	33.2												
Radius of Curvature (ft)	40.0	500.0) 158.5	NA*	NA*	NA*	40.0	500.0	158.5												
Meander Wavelength (ft)	19.2	112.4	57.0	NA*	NA*	NA*	19.2	112.4	57.0												
Meander Width ratio	1.3	6.3	3.4	NA*	NA*	NA*	2.8	23.9	12.1												
Profile																					
Riffle length (ft)	NA*	NA*	NA*	NA*	NA*	NA*	3.8	62.7	28.0												
Riffle slope (ft/ft)	0.0024	4 0.048	7 0.0197	NA*	NA*	NA*	0.001	0.061	0.014												
Pool length (ft)	3.7	23	.9 12.6	NA*	NA*	NA*	1.8	22.7	5.2												
Pool spacing (ft)	17.7	69	.3 41.6	NA*	NA*	NA*	14.0	183.0	64.6												
Additional Reach Parameters																					
Valley Length (ft)		1,300)		NA*			1,300													
Channel Length (ft)		1,43	5		NA*			1,439													
Sinuosity		1.1			NA*			1.1													
Water Surface Slope (ft/ft)		0.016	1		NA*			0.0153		1											
BF slope (ft/ft)		0.016	1		NA*			0.0165		1											
Rosgen Classification		B5c			NA*			E5/Bc5		1											
Habitat Index*		NA*			NA*			N/A													
Macrobenthos*		NA*			NA*			N/A													

*Historical project documents necessary to provide this data were unavailable at the time of report submission

Table 12. cont. Morphology and Hydraulic Monitoring Summary UT to Bear Swamp Creek Stream Restoration Site / EEP Project No. 27 1,439 linear feet																							
Parameter		Cı	ross S Ri	lection ffle	n 5																		
													1				1	1					
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3 M	Y4 MY	5 MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	NA*	NA*	5.7																				
Floodprone Width (ft)	NA*	NA*	10.1																				
BF Cross Sectional Area (ft ²)	NA*	NA*	6.1																				
BF Mean Depth (ft)	NA*	NA*	1.1																				
BF Max Depth (ft)	NA*	NA*	1.3																				
Width/Depth Ratio	NA*	NA*	5.3																				
Entrenchment Ratio	NA*	NA*	1.8																				
Wetted Perimeter(ft)	NA*	NA*	7.9																				
Hydraulic radius (ft)	NA*	NA*	0.8																				
Substrate																							
d50 (mm)	0.4	NA*	1.5																				
d84 (mm)	3.0	NA*	14.0																				

APPENDIX A

FIGURES

APPENDIX B

VEGETATION DATA

UT to Bear Swamp Creek Stream Restoration Site Representative Vegetation Problem Area

Photo 1. Heavy loblolly pine colonization near Station 1+00.

Photo 2. Heavy loblolly pine colonization near Station 10+00.

Photo 3. Heavy loblolly pine colonization near Station 1+00.

Unnamed Ttibutary to Bear Swamp Stream Restoration Site

Year 2 Monitoring Data collected 10/05/05 0.02-acre plots

			Plots			Year 1	Year 2	
Species	1	2	3	4	5	Totals*	Totals	Survival %
Shrubs								
Alnus serrulata						0	0	
Cornus amomum	3	6		3		13	12	92
Ilex verticillata						0	0	
Salix nigra	4	21		3		19	29	153
Sambucus canadensis						0	0	
Trees								
Betula nigra	4	1		1		0	6	
Carpinus caroliniana						1	0	0
Fraxinus pennsylvanica		6	1		1	8	8	100
Juglans nigra	1	2				3	3	100
Morus rubra						1	0	0
Ostrya virginiana						5	0	0
Quercus michauxii	1			2	2	3	5	167
Quercus pagoda						1	0	0
Total	13	36	1	9	3			
Density	650	1800	50	450	150			
Average Density	620							

St	em Count	ts for Volu	nteer Speci	es Arrange	d by Plot		
			Plots			Year 1	Year 2
Species	1	2	3	4	5	Totals	Totals
Acer negundo	2	1				0	3
Acer rubrum	43			27	3	51	73
Baccharis halimifolia		2				0	2
Celtis laevigata			2			0	2
Diospyros virginiana			1			0	1
Liquidambar styraciflua	13				13	20	26
Liriodendron tulipifera	2			1		7	2
Pinus taeda	200	161	36	72	78	250	547
Platanus occidentalis					1	0	1
Prunus serotina		2		1	2	0	5
Rhus copallina						1	0
Rhus glabra	43					2	43
Ulmus alata	37		1	2	1	0	41
Viburnum nudum			3			0	3
Total	340	166	43	103	98		
Density	17000	8300	2150	5150	4900		
Average Density	7500						
Planted + Volunteer Totals	353	202	44	112	101		
Density	17650	10100	2200	5600	5050		
Average Density	8120						

Vegetation Plot 1 – UT to Bear Swamp Creek Restoration Site (Year 3)

Photo was taken October 5, 2005 from the northeast corner looking southwest.

Vegetation Plot 2 – UT to Bear Swamp Creek Restoration Site (Year 3)

Photo was taken October 5, 2005 from the northeast corner looking southwest.

Vegetation Plot 3 – UT to Bear Swamp Creek Restoration Site (Year 3)

Photo was taken October 5, 2005 from the southeast corner looking northwest.

Vegetation Plot 4 – UT to Bear Swamp Creek Restoration Site (Year 3)

Photo was taken October 5, 2005 from the southeast corner looking northwest.

Vegetation Plot 5 – UT to Bear Swamp Creek Restoration Site (Year 3)

Photo was taken October 5, 2005 from the northwest corner looking southeast.

APPENDIX C

STREAM GEOMORPHOLOGY DATA

Photo 1. Rock Vane 2 has filled in with sediment but stream remains stable.

Photo 2. Piping of flow behind Rock Vane 3.

Photo 3. Piping of flow behind Rock Vane 3, causing moderate degradation of channel behind vane.

Photo 4. Piping of flow behind Rock Vane 3, causing moderate degradation of channel behind vane.

Photo 5. Piping of flow behind Rock Vane 10.

Photo 6. Piping of flow behind Rock Vane 11.

UT to Bear Swamp Creek Stream Restoration Site (Year 3) UT to Bear Swamp Creek Stream Restoration Site (Year 3) Stream Problem Areas

Photo 7. Rock Vane 14 has filled in with sediment but stream remains stable.

Photo 8. Rock Vane 17 has filled in with sediment but stream remains stable.

Photo 9. Piping of flow behind Rock Vane 11.

Photo 10. Erosion directly adjacent to stream from incoming 4-inch pipe.

Photo 11. Minor erosion along outside bend where channel is pinched.

Photo Point 1 – UT to Bear Swamp Creek Stream Restoration Site (Year 3)

Photo was taken November 29, 2005 looking downstream

Photo Point 2 – UT to Bear Swamp Creek Stream Restoration Site (Year 3)

Photo was taken November 29, 2005 looking upstream.

Photo Point 3 – UT to Bear Swamp Creek Stream Restoration Site (Year 3)

Photo was taken November 29, 2005 looking upstream.

Photo was taken October 5, 2005 looking downstream.

Photo Point 4 – UT to Bear Swamp Creek Stream Restoration Site (Year 3)

Photo was taken November 29, 2005 looking upstream.

Photo was taken October 5, 2005 looking downstream.

Photo Point 5 – UT to Bear Swamp Creek Stream Restoration Site (Year 3)

Photo was taken November 29, 2005 looking upstream.

Photo was taken October 5, 2005 looking downstream.

Photo Point 6 – UT to Bear Swamp Creek Stream Restoration Site (Year 3)

Photo was taken October 5, 2005 looking upstream.

Photo was taken November 29, 2005 looking downstream

Photos taken on October 5, 2005 and November 29 looking downstream.

	Table C1. Visual Morphologica	al Stability	Assessm	ent		
	UT to Bear Swamp Creek Stream Restor	ration Site	/ EEP Pr	oject No.	27	
	1,439 linear	feet		0		
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total number per As-built	Total Number / feet in unstable state	% Perform in Stable Condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	12	14	N/A	86	
	2. Armor stable (e.g. no displacement)?	12	14	N/A	86	
	3. Facet grade appears stable?	10	14	N/A	71	
	4. Minimal evidence of embedding/fining?	10	14	N/A	71	
	5. Length appropriate?	12	14	N/A	86	80%
B. Pools	1. Present? (e.g not subject to severe aggrad. or migrat.?)	14	14	N/A	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	12	14	N/A	86	
	3. Length appropriate?	12	14	N/A	86	91%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	7	7	N/A	100	
	2. Downstream of meander (glide/inflection) centering?	6	8	N/A	75	88%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	12	14	N/A	86	
	2. Of those eroding, # w/concomitant point bar formation?	1	2	N/A	50	
	3. Apparent Rc within spec?	14	14	N/A	100	
	4. Sufficient floodplain access and relief? ⁶	10	14	N/A	71	77%
E. Bed	1. General channel bed aggradation areas (bar formation)	N/A	N/A	3/75	96	
General	2. Channel bed degradation – areas of increasing down- cutting or head cutting?	N/A	N/A	2/150	93	95%
F. Vanes	1. Free of back or arm scour?	7	8	N/A	88	
	2. Height appropriate?	6	8	N/A	75	
	3. Angle and geometry appear appropriate?	7	8	N/A	88	
	4. Free of piping or other structural failures?	6	8	N/A	75	82%
G. Wads/	1. Free of scour?	19	25	N/A	76	
Boulders	2. Footing stable?	24	25	N/A	96	86%

C18

C19

C20

C21

UT to Bear Swamp Creek

Project Name: UT to Bear Swamp Creek Task: Longitudinal Profile Date: November 2005 Crew: JC, JG, JW

	TW	WS	BKF			TW	WS	BKF	
Station	Elevation	Elevation	Elevation	Feature	Station	Elevation	Elevation	Elevation	Feature
0.0	94.3	94.48			382.4	89.22	89.51		TR
10.5	94.26	94.40		TR	396.3	88.88	89.11		
28.6	93.98	94.31	94.7	BR/TP	409.8	88.61	88.80		
51.3	94.21	94.31		BP	418.2	88.46	88.67		BR
53.5	91.55	93.81			422.9	85.47	88.36		TP
60.4	93.49	93.71	94.27		429.4	87.92	88.35		BP
72.3	93.22	93.71			436.8	87.64	88.11		
91.8	93.33	93.40			449.8	88.04	88.21		
92.1	93.01	93.31	93.96		459.7	88.15	88.26		
95.7	93.1	93.31		TR	531.3	87.76	87.94		
101.8	92.92	93.26	93.64		537.2	87.74	87.83	88.57	
110.1	92.81	93.27	93.68		538.2	86.13	87.01		TP
117.5	92.82	93.20			542.5	84.51	87.01		BP
127.5	92.77	93.15			548.0	86.62	87.01		TR
134.7	92.52	93.10	93.53	BR	553.5	86.62	86.95	87.88	
147.3	92.92	93.02			566.9	86.22	86.80		BR
158.8	90.6	92.30			570.5	84.27	86.11		TP
162.3	91.83	92.24			573.3	84.25	86.11		BP
171.9	91.73	92.16			581.6	85.89	86.08		TR
183.9	91.83	92.15	92.78		583.3	85.56	85.85	86.9	
194.2	91.52	92.15			598.2	85.25	85.43		
199.5	92.08	92.09		TR	604.4	84.88	85.24		BR
211.8	91.92	92.09		BR	607.5	84.06	84.95		TP
213.2	91.15	92.09			611.2	83.08	84.95		BP
216.5	90.69	92.09			617.2	84.65	84.88	85.7	TR
223.1	91.43	92.06		BP	639.2	84.65	84.86		BR
233.7	91.77	92.03			640.0	83.15	84.07		TP
257.0	91.73	91.96	92.28	TR	641.9	82.24	84.07	85.45	BP
265.7	91.53	91.96			648.3	83.76	84.07		TR
267.8	91.47	91.96			661.4	83.37	83.86	84.84	
270.3	90.12	91.56			671.2	83.27	83.74		BR
271.8	90.28	91.56		BR	675.7	81.53	83.20		TP
275.7	91.19	91.51			678.0	81.65	83.20		BP
286.5	90.88	91.40			685.7	82.72	83.19		TR
300.3	91.03	91.18	91.49		717.1	82.04	82.46	83.1	
315.6	90.38	90.60			746.4	81.98	82.44		BR
322.1	89.89	90.28			750.9	81.77	82.44		
327.1	87.52	90.23		TP	757.4	81.98	82.44	83.24	TR
334.5	90.08	90.20		BP	768.8	81.89	82.31		BR
342.8	89.9	90.17			779.5	81.63	82.32	82.87	TP
350.3	89.64	90.13			788.1	81.29	82.30		BP
362.2	89.8	90.08	90.72		792.7	81.9	82.18		
374.4	88.91	89.49			793.4	79.39	81.07		TP

Project Name: UT to Bear Swamp Creek Task: Longitudinal Profile (continued) Date: November 2005 Crew: JC, JG, JW

	TW	WS	BKF			TW	WS	BKF	
Station	Elevation	Elevation	Elevation	Feature	Station	Elevation	Elevation	Elevation	Feature
795.9	79.4	81.07		BP	1134.9	75.16	75.43		
803.3	80.75	81.11		TR	1146.2	75.15	75.46	76.35	
822.3	80.87	81.03		BR	1156.0	74.85	75.39		TP
843.4	80.53	81.07	81.64		1164.7	74.78	75.38		BP
849.7	80.93	81.07			1170.1	75.1	75.43		TR
849.8	79.57	80.49		TP	1173.8	75.12	75.20		BR
851.6	79.85	80.49		BP	1174.1	73.23	74.50		TP
855.6	80.23	80.52	81.35	TR	1177.8	72.47	74.50		BP
870.8	80.06	80.30	81.08	BR	1185.1	74.3	74.50		TR
875.4	79.83	80.28			1205.9	74.18	74.44	75.28	
880.4	80.16	80.28		TR	1230.6	74.13	74.16		BR
887.7	80.06	80.17	80.94	BR	1240.8	73.56	73.98	74.89	TR
889.1	79.74	80.22		TP	1255.1	73.46	73.89		
892.8	79.2	80.22		BP	1269.7	73.51	73.80		
897.4	79.99	80.20	80.86		1285.7	73.5	73.75		
903.1	79.67	80.15			1295.3	73.31	73.64	74.6	
920.4	79.89	80.06			1300.8	73.46	73.62		BR
925.0	79.09	79.55			1304.2	73.39	73.51		
936.6	78.36	79.49			1308.1	72.14	73.56		TP
942.8	79.2	79.50			1310.2	71.97	73.56		BP
947.8	79.43	79.50			1317.8	73.2	73.53		TR
950.6	77.49	78.89		TP	1336.9	73.01	73.22	74.05	
953.2	77.34	78.88		BP	1352.8	73	73.22		
961.3	78.61	78.88	79.48	TR	1380.5	72.65	73.04	73.86	BR
978.8	78.32	78.82	79.4		1386.6	72.22	72.88		TP
996.6	77.98	78.62		BR	1391.2	72.13	72.87		BP
1000.6	76.01	78.07		TP	1394.1	72.58	72.88		TR
1002.7	75.99	78.02		BP	1412.1	72.22	72.65		
1010.6	77.82	78.02		TR	1439.3	72.28	72.59	73.44	BR
1018.0	77.51	77.98	78.57	BR	end profile				
1035.7	77.94	78.01							
1038.8	76.51	77.47		TP					
1043.0	75.19	77.47		BP					
1051.2	77.03	77.46		TR					
1076.3	77.2	77.35	78.13	BR					
1085.3	75.26	75.99		TP					
1087.5	75.26	75.99		BP					
1091.6	75.68	75.98		TR					
1103.7	75.53	75.89	76.48						
1113.7	75.41	75.74		_					
1123.8	74.65	75.64	76.75	BR					
1126.6	74.41	75.58		TP					
1131.1	75.3	75.61		BP					

Project Name: UT to Bear Swamp Creek Task: Riffle Calculations Date: November 2005 Crew: JC, JG, JW

Feature/Facet slope, length, and spacing					Feature/Facet slope, length, and spacing				
Riffle		WS			Riffle		WS		
Station	Length	Elevation	Change	Slope	Station	Length	Elevation	Change	Slope
10.5	40.4	94.40	0.00	0.005	961.3	05.0	78.61	0.00	0.000
28.6	18.1	94.31	0.09	0.005	996.6	35.3	78.32	0.29	0.008
95.7		93.31			1010.6		77.82		
134.7	39.0	93.10	0.21	0.005	1018.0	7.4	77.51	0.31	0.042
100 F		00.00			1051.0		77.40		
211.8	12.3	92.08	0 16	0.013	1051.2	25.1	77.35	0 12	0.005
211.0	12.0	01.02	0.10	0.010	1070.0	20.1	11.00	0.12	0.000
300.3		91.18			1091.6		75.98		
322.1	21.8	90.28	0.90	0.004	1123.8	32.2	75.64	0.34	0.011
382.4		89 51			1170 1		75 43		
418.2	35.8	88.67	0.84	0.023	1173.8	3.8	75.20	0.23	0.061
548.0	40.0	87.01	0.04	0.044	1185.1	45 5	74.50	0.04	0.007
566.9	18.9	86.80	0.21	0.011	1230.6	45.5	74.16	0.34	0.007
581.6		86.08			1240.8		73.98		
604.4	22.8	85.24	0.84	0.037	1300.8	60.0	73.62	0.36	0.006
047.0		04.00			4047.0		70 50		
630 2	22.0	84.88 84.86	0.02	0.001	1317.8	62.7	73.53 73.04	0 49	0.008
000.2	22.0	04.00	0.02	0.001	1000.0	02.7	10.04	0.40	0.000
648.3		84.07			1394.1		72.88		
671.2	22.9	83.74	0.33	0.014	1439.3	45.2	72.59	0.29	0.006
685.7		83 19			Average rif	fle slone:		0 014 ft /ft	
746.4	60.7	82.44	0.75	0.012	/ Weruge III	ne slope.	0.014 11./11.		
					Riffle length: 28.0 ft. (av		0 ft. (averag	ge)	
757.4		82.44	0.40	0.044			0.0.0	00 7 <i>6</i> /	,
768.8	11.4	82.31	0.13	0.011			3.8 π.	- 62.7 π. (ra	ange)
803.3		81.11							
822.3	19.0	81.03	0.07	0.004					
055.0		00.50							
855.6 870.8	15.2	80.52	0.22	0.014					
010.0	10.2	00.00	0.22	0.014					
880.4		80.28							
887.7	7.3	80.17	0.12	0.016					

Project Name: UT to Bear Swamp Creek Task: Pool Calculations Date: November 2005 Crew: JC, JG, JW

Feature/Facet slope, length, and spacing					Feature/Facet slope, length, and spacing				
Pool		WS			Pool		WS		
Station	Length	Elevation	Change	Slope	Station	Length	Elevation	Change	Slope
28.6	~~ -	94.31			1000.6		78.07		
51.3	22.7	94.31	0.00	0	1002.7	2.2	78.02	0.05	0.023
211.8		92.09			1038.8		77.47		
223.1	11.3	92.06	0.03	0.003	1043.0	4.2	77.47	0.00	0.000
					1005.0				
327.1	74	90.23	0.02	0.0044	1085.3	<u>.</u>	75.99	0.00	0.000
334.5	7.4	90.20	0.03	0.0041	C.1001	2.2	75.99	0.00	0.000
422.9		88.36			1126.6		75.58		
429.4	6.5	88.35	0.01	0.0015	1131.1	4.5	75.61	0.04	0.009
520 D		97.01			1156.0		75 20		
530.Z	13	07.01 87.01	٥	٥	1150.0	87	75.39	0.01	0.001
042.0	4.5	07.01	0	0	1104.7	0.7	75.50	0.01	0.001
570.5		86.11			1174.1		74.50		
573.3	2.8	86.11	0	0	1177.8	3.7	74.50	0.00	0.000
607 5		94.05			1200 1		72 56		
611.2	3.7	84.95 84.95	0	0	1308.1	2.1	73.56	0.00	0.000
	•	000	·	·					
640.0		84.07			1386.6		72.88		
641.9	1.9	84.07	0	0	1391.2	4.6	72.87	0.01	0.002
675 7		83 20			Average pool slope: 0.0022 ft /ft				
678.0	2.3	83.20	0	0	Average poor slope.		0.0022 11./11.		
					Pool-to-poo	ol spacing:	64.	6 ft. (averag	ge)
779.5		82.32							
788.1	8.6	82.30	0.02	0.002	14 ft		- 183 ft. (range)		
793.4		81.07			Pool length	i:	5.2	2 ft. (averao	e)
795.9	2.5	81.07	0.00	0.000				(- /
							1.8 ft.	- 22.7 ft. (ra	ange)
849.8		80.49							
851.6	1.8	80.49	0.00	0.000					
889.1		80.22							
892.8	3.7	80.22	0.00	0.000					
950.6	0.0	78.89	0.04	0.004					
953.Z	2.0	10.00	0.01	0.004					
					1				

